16 research outputs found

    Effects of Low-cost Offsets on Energy Investment -New Perspectives on REDD-

    Get PDF
    Tropical deforestation is one of the major sources of carbon emissions, but the Kyoto Protocol presently excludes avoiding these specific emissions to fulfill stabilization targets. Since the 13th Conference of the Parties (COP) to the UNFCCC in 2007, where the need for policy incentives for the reduction of emissions from deforestation and degradation (REDD) was first officially recognized, the focus of this debate has shifted to issues of implementation and methodology. One question is how REDD would be financed, which could be solved by integrating REDD credits into existing carbon markets. However, concern has been voiced regarding the effects that the availability of cheap REDD credits might have on energy investments and the development of clean technology. On the other hand, investors and producers are also worried that emissions trading schemes like the one installed in Europe might deter investment into new technologies and harm profits of existing plants due to fluctuations in the price of emissions permits. This paper seeks to contribute to this discussion by developing a real options model, where there is an option to invest in less carbon-intensive energy technology and an option to purchase credits on REDD, which you will exercise or not depending on the future evolution of CO2 prices. In this way, unresolved questions can still be addressed at a later stage, while producers and investors hold REDD options to maintain flexibility for later decisions. We find that investment in cleaner technology is not significantly affected if REDD options are priced as a derivative of CO2 permits. Indeed, the availability of REDD options helps to smooth out price fluctuations that might arise from permit trading and thus decreases risk for the producer - thereby being a complement to permit trading rather than an obstacle undermining cap-and-trade.Real Options, Energy Investment, Cap-And-Trade, REDD

    Large-Scale Modelling of Global Food Security and Adaptation under Crop Yield Uncertainty

    Get PDF
    Concerns about future food security in the face of volatile and potentially lower yields due to climate change have been at the heart of recent discussions on adaptation strategies in the agricultural sector. While there are a variety of studies trying to quantify the impact of climate change on yields, some of that literature also acknowledges the fact that these estimates are subject to substantial uncertainty. The question arises how such uncertainty will affect decision-making if ensuring food security is an explicit objective. Also, it will be important to establish, which options for adaptation are most promising in the face of volatile yields. The analysis is carried out using a stochastic version of the Global Biosphere Management Model (GLOBIOM) model, which is a global recursive dynamic partial equilibrium bottom-up model integrating the agricultural, bio-energy and forestry sectors with the aim to give policy advice on global issues concerning land use competition between the major land-based production sectors. The source of stochasticity is the interannual crop yield variability, making it more risky to rely on average yields and thus requiring stochastic optimization techniques. The results indicate that food security requires overproduction to meet minimum food supply constraints also in scenarios of negative yield shocks, where the additional land needed is sourced from forests and other natural land. Trade liberalization and enhanced irrigation both appear to be promising food supply stabilization, and hence land saving, mechanisms in the face of missing storage.food security, food price volatility, optimization under uncertainty, adaptation, land use change, Crop Production/Industries, Food Security and Poverty,

    Investment in Irrigation Systems under Weather Uncertainty

    Get PDF
    Irrigated agriculture will play a crucial role to meet future food demand, but a sustainable water resource management in agriculture is crucial as well. Therefore, the European Water Framework Directive promotes several measures, e.g., the adoption of adequate water pricing mechanisms or the promotion of water-saving irrigation techniques. Since production conditions such as weather and climate development are uncertain, farmers might be reluctant to invest in a water-saving but capital intensive irrigation system. We apply a stochastic dynamic programming approach to analyze a farmer’s optimal investment strategy for either a water–saving drip irrigation system or sprinkler irrigation system under weather uncertainty and assess the probability of adopting either irrigation system until the year 2040. We design two policy scenarios: (i) irrigation water pricing and (ii) equipment subsidies for drip irrigation, and investigate how they affect the farmer’s optimal investment strategy. Our case study analysis is performed for the region Marchfeld, a typical semi-arid agricultural production region in Austria. We use data from the bio-physical process simulation model EPIC (Environmental Policy Integrated Climate) which accounts for site and management related characteristics as well as weather parameters from a statistical climate change model. We find that investment in drip irrigation is unlikely unless subsidies for equipment cost are granted. Even water prices do not increase the probability to adopt a drip irrigation system, but rather decrease the probability to invest into either irrigation system.Irrigation investment, stochastic dynamic programming approach, water policies, weather uncertainty, EPIC, Farm Management, Risk and Uncertainty,

    Evaluation of hydropower upgrade projects - a real options approach

    Get PDF
    When evaluating whether to refurbish existing hydropower plants or invest in a new power plant, there are two important aspects to take into consideration. These are the capacity chosen for the production facilities and the timing of the investment. This paper presents an investment decision support framework for hydropower producers with production facilities due for restoration. The producer can choose between refurbishing existing power plants and investing in a new production facility. A real options framework is proposed to support the investment decision. Using a case from Norsk Hydro ASA, a Norwegian hydropower producer, we employ the framework to evaluate the investment opportunities. Our main contribution is an approach that combines hydropower scheduling and real options valuation, and the results from our analysis suggest feasible investment strategies for Norsk Hydro ASA.Electricity price uncertainty; reservoir management; hydroelectric scheduling; investment under uncertainty; electricity markets

    Evaluation of hydropower upgrade projects - a real options approach

    Get PDF
    When evaluating whether to refurbish existing hydropower plants or invest in a new power plant, there are two important aspects to take into consideration. These are the capacity chosen for the production facilities and the timing of the investment. This paper presents an investment decision support framework for hydropower producers with production facilities due for restoration. The producer can choose between refurbishing existing power plants and investing in a new production facility. A real options framework is proposed to support the investment decision. Using a case from Norsk Hydro ASA, a Norwegian hydropower producer, we employ the framework to evaluate the investment opportunities. Our main contribution is an approach that combines hydropower scheduling and real options valuation, and the results from our analysis suggest feasible investment strategies for Norsk Hydro ASA

    Evaluation of hydropower upgrade projects - a real options approach

    Get PDF
    When evaluating whether to refurbish existing hydropower plants or invest in a new power plant, there are two important aspects to take into consideration. These are the capacity chosen for the production facilities and the timing of the investment. This paper presents an investment decision support framework for hydropower producers with production facilities due for restoration. The producer can choose between refurbishing existing power plants and investing in a new production facility. A real options framework is proposed to support the investment decision. Using a case from Norsk Hydro ASA, a Norwegian hydropower producer, we employ the framework to evaluate the investment opportunities. Our main contribution is an approach that combines hydropower scheduling and real options valuation, and the results from our analysis suggest feasible investment strategies for Norsk Hydro ASA

    Assessing the effects of CO2 price caps on electricity investments--A real options analysis

    No full text
    This paper uses real options modeling to assess the impact of different climate change policy instruments on investment, profits and cumulative emissions in the electricity sector. Even though CO2 price caps or "safety valves" have been suggested as methods to limit uncertainty emanating from fluctuating prices of CO2 permits that would hurt the industry's profit and thereby also energy security, our analysis shows that price caps set at a too low level are detrimental to the adoption of e.g. modern biomass-fired capacity as a replacement for existing coal-fired power plants. We therefore conduct a series of experiments with different policy scenarios to analyze under which regime emissions are most effectively reduced. With respect to CO2 price uncertainty, it turns out that even for moderately rising CO2 prices, fluctuations frequently lead to investment into carbon capture and storage (CCS), while investment is often not triggered in the face of deterministic CO2 prices.Electricity planning Climate change policy Price caps

    Effects of Low-cost Offsets on Energy Investment – New Perspectives on REDD –

    No full text
    Tropical deforestation is one of the major sources of carbon emissions, but the Kyoto Protocol presently excludes avoiding these specific emissions to fulfill stabilization targets. Since the 13th Conference of the Parties (COP) to the UNFCCC in 2007, where the need for policy incentives for the reduction of emissions from deforestation and degradation (REDD) was first officially recognized, the focus of this debate has shifted to issues of implementation and methodology. One question is how REDD would be financed, which could be solved by integrating REDD credits into existing carbon markets. However, concern has been voiced regarding the effects that the availability of cheap REDD credits might have on energy investments and the development of clean technology. On the other hand, investors and producers are also worried that emissions trading schemes like the one installed in Europe might deter investment into new technologies and harm profits of existing plants due to fluctuations in the price of emissions permits. This paper seeks to contribute to this discussion by developing a real options model, where there is an option to invest in less carbon-intensive energy technology and an option to purchase credits on REDD, which you will exercise or not depending on the future evolution of CO2 prices. In this way, unresolved questions can still be addressed at a later stage, while producers and investors hold REDD options to maintain flexibility for later decisions. We find that investment in cleaner technology is not significantly affected if REDD options are priced as a derivative of CO2 permits. Indeed, the availability of REDD options helps to smooth out price fluctuations that might arise from permit trading and thus decreases risk for the producer - thereby being a complement to permit trading rather than an obstacle undermining cap-and-trade

    Options on low-cost abatement and investment in the energy sector: new perspectives on REDD

    No full text
    Deforestation is one of the major sources of carbon emissions, but the Kyoto Protocol presently excludes avoiding these emissions to fulfill stabilization targets. Since the need for policy incentives for the reduction of emissions from deforestation and degradation (REDD) was officially recognized in 2007, the focus of this debate has shifted to issues of implementation. Concerns about the effects that the availability of low-cost REDD credits might have on energy investments, and the development of clean technology constitute the main motivation of this paper. We analyze the production side of the problem with the help of a real options model with an option to invest in less carbon-intensive energy technology and an option to purchase credits on REDD, which will (or will not) be exercised in the future. Unresolved questions can thus still be addressed later, while producers and investors hold REDD options to maintain flexibility for later decisions.

    Investment under market and climate policy uncertainty

    No full text
    Climate change is considered as one of the major systematic risks for global society in the 21st century. Yet, serious efforts to slow the accumulation of emissions are still in their primordial stage and policy makers fail to give proper long-term signals to emitters. These days, investors do not only face uncertainty from volatile prices in the traditional markets, but also from the less conceivable uncertainty of stricter climate change policy. This paper investigates the impact of learning about the commitment of government to a climate policy regime in a real options framework. Two types of uncertainty are distinguished: market-driven price volatility around a mean price and bifurcating price trajectories mimicking uncertainty about changing policy regimes. One of the findings is that the producer facing market uncertainty about CO2 prices invests into carbon-saving technology earlier than if the actual price path had been known on beforehand. This is not a typical real options outcome, but the result of optimizing under imperfect information, which leads to decisions that are different from the optimal strategies under full information. On the other hand, policy uncertainty induces the producer to wait and see whether the government will further commit to climate policy. This waiting is a real options effect. In other words, if learning about government commitment is more valuable than investing into mitigation technologies immediately, the option value exceeds the value of the technology and investment will be postponed. This might lead to supply shortages and limited diffusion of less carbon-intensive technology.Policy uncertainty Real options Electricity planning
    corecore